Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bao-Hong Hou, Li-Na Zhou, Hong-Yuan Wei,* Jing-Kang Wang and Wei Chen

The State Research Centre of Industrialization for Crystallization Technology, Tianjin
University, Tianjin 300072, People's Republic of China

Correspondence e-mail: chenweink@eyou.com

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
Disorder in solvent or counterion
R factor $=0.043$
$w R$ factor $=0.127$
Data-to-parameter ratio $=13.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

catena-Poly[[[(acetonitrile- $\kappa N)$ silver(I)]- μ-bis-(pyrimidin-2-ylsulfanyl)methane- $\left.\kappa^{2} N^{1}: N^{1}\right]$ tetrafluoroborate]

In the title complex, $\left\{\left[\operatorname{Ag}\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{~S}_{2}\right)\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)\right] \mathrm{BF}_{4}\right\}_{n}$, the Ag^{I} atom shows trigonal-planar coordination, as it is coordinated by the N atoms from two bis(pyrimidin-2-ylsulfanyl)methane molecules and the N -atom donor of an acetonitrile molecule. The manner in which the donor molecules connect to the Ag atoms leads to a linear chain structure. Adjacent chains are connected into a layer via weak Ag...S interactions.

Comment

Following a report on silver (I) N-heterocyclic thioether complexes featuring unusual coordination motifs (Hong et al., 2000), we report the silver tetrafluoroborate complex, (I), of bis(pyrimidin-2-ylsulfanyl)methane. The Ag^{I} atom exists in a distorted trigonal-planar geometry (Fig. 1) which comprises two pyrimidine N -atom donors from different donor molecules and the N -atom donor from an acetonitrile molecule.

(I)

The bond dimensions are within the range reported in similar complexes (Carlucci et al., 1998; Constable et al., 1998; Hou et al., 2004). In the donor molecule, the two pyrimidine

ORTEPII (Johnson, 1976) view of the title compound with 30% probability displacement ellipsoids. [Symmetry codes: (i) $\frac{3}{2}-x, \frac{1}{2}+y, z$].

Received 7 June 2005 Accepted 17 June 2005 Online 30 July 2005
rings are nearly perpendicular to each other [dihedral angle $=$ $\left.87.7(1)^{\circ}\right]$, the twist being necessary for the pyrimidine rings to engage in coordination to give rise to a linear chain running along the b axis. As the Ag atom in one chain interacts weakly with the S atoms of adjacent chains $[\mathrm{Ag} \cdots \mathrm{S}=3.050$ (2) \AA] , the geometry is distorted towards trigonal bipyramidal; the weak interactions lead to a layer structure (Fig. 2). The anions are found between the layers. The analogous nitrate complex (Zheng et al., 2003) adopts a paired-chain structure.

Experimental

Bis(pyrimidin-2-ylsulfanyl)methane (L) was prepared according to a reported procedure (Zheng et al., 2003) and the product was characterized by NMR and IR spectroscopy. A solution containing a 1:1 molar ratio of $\mathrm{AgBF}_{4}(0.2 \mathrm{mmol}, 0.08 \mathrm{~g})$ and the ligand (0.2 mmol , 0.04 g) in acetonitrile-chloroform (1:1) was stirred for 30 min . The mixture was filtered and the solvent allowed to evaporate to afford colourless crystals. CHN elemental analyses confirmed the formulation determined from the diffraction study. FT-IR data (KBr pellet, cm^{-1}): 3073 (m), 3011 (w), 2933 (w), 1560 (s), 1582 (s), 1057 (s), 752 (m), 693 (m), 494 (w).

Crystal data

$\left[\mathrm{Ag}\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{~S}_{2}\right)\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)\right] \mathrm{BF}_{4}$
$M_{r}=472.05$
Orthorhombic, $P b c a$
$a=8.7063(12) \AA \AA^{\circ} \AA$
$b=14.7402(16) \AA$
$c=24.965(2) \AA$
$V=3203.9(6) \AA^{3}$
$Z=8$
$D_{x}=1.957 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1758
$\quad \quad$ reflections
$\theta=2.9-26.4^{\circ}$
$\mu=1.57 \mathrm{~mm}^{-1}$
$T=292(1) \mathrm{K}$
Block, colourless
$0.20 \times 0.18 \times 0.14 \mathrm{~mm}$

Data collection

Bruker SMART 1000 CCD diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.706, T_{\text {max }}=0.804$
17366 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$

H -atom parameters constrained
3322 independent reflections
$R_{\text {int }}=0.041$
$\theta_{\text {max }}=26.5^{\circ}$
$l=-31 \rightarrow 23$

$$
+2.423 P]
$$

$w R\left(F^{2}\right)=0.127$
$S=1.18$

$$
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3
$$

3322 reflections
253 parameters 2441 reflections with $I>2 \sigma(I)$
$h=-8 \rightarrow 10$
$k=-17 \rightarrow 18$

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0613 P)^{2}\right.
$$

$(\Delta / \sigma)_{\max }=0.001$ 。
$\Delta \rho_{\text {max }}=0.79 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.68 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0078 (5)

Table 1
Selected geometric parameters $\left({ }^{\circ}\right)$.

$\mathrm{N} 1-\mathrm{Ag} 1-\mathrm{N} 3^{\mathrm{i}}$	$141.32(13)$	$\mathrm{N} 3^{\mathrm{i}}-\mathrm{Ag} 1-\mathrm{N} 5$	$92.35(14)$
$\mathrm{N} 1-\mathrm{Ag} 1-\mathrm{N} 5$	$124.56(15)$		

Symmetry code: (i) $-x+\frac{3}{2}, y+\frac{1}{2}, z$.

Figure 2
View of the zigzag chains linked through weak Ag...S interactions, shown as dashed lines. H atoms have been omitted.

All H atoms were positioned geometrically, with $\mathrm{Csp}{ }^{2}-\mathrm{H}=0.93 \AA$ and $\mathrm{Cs} p^{3}-\mathrm{H}=0.97 \AA$; they were constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The BF_{4}^{-}anion was disordered and was modelled as two components with site occupancies of 0.86 (1) and 0.14 (1). The B-F distances were restrained as 1.35 (1) \AA.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

We gratefully acknowledge financial support from the National Natural Science Foundation of China (No. 20206022) and the Tianjin Natural Science Foundation (05YFJZJC02000).

References

Bruker (1998). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Carlucci, L., Giani, G., Proserpio, D. M. \& Sironi, A. (1998). Inorg. Chem. 37, 5941-5943.
Constable, E. C., Edwards, A. J., Haire, G. R., Hannon, M. J. \& Raithby, P. R. (1998). Polyhedron, 17, 243-253.

Hou, L., Li, D., Yin, Y.-G., Wu, T. \& Ng, S. W. (2004). Acta Cryst. E60, m1106m1107.
Hong, M.-C., Zhao, Y.-J., Su, W.-P., Cao, R., Fujita, M., Zhou, Z.-Y. \& Chan, A. S. C. (2000). Angew. Chem. Int. Ed. 39, 2468-2470.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Sheldrick. G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97, University of Göttingen, Germany.
Zheng, Y., Du, M., Zhang, R.-H. \& Bu, X.-H. (2003). J. Chem. Soc. Dalton Trans. pp. 1509-1514.

